Create a PK/Indirect response model
pkindirectmodel.Rd
Use to create a PK/Indirect response model.
Usage
pkindirectmodel(
isPopulation = TRUE,
parameterization = "Clearance",
absorption = "Intravenous",
numCompartments = 1,
isClosedForm = TRUE,
isTlag = FALSE,
hasEliminationComp = FALSE,
isFractionExcreted = FALSE,
isSaturating = FALSE,
infusionAllowed = FALSE,
isDuration = FALSE,
isSequential = FALSE,
isPkFrozen = FALSE,
hasEffectsCompartment = FALSE,
indirectType = "LimitedStimulation",
isBuildup = TRUE,
isExponent = FALSE,
indirectFrozen = FALSE,
data = NULL,
columnMap = TRUE,
modelName = "",
workingDir = "",
...
)
Arguments
- isPopulation
Is this a population model
TRUE
or individual modelFALSE
?- parameterization
Type of parameterization. Options are
"Clearance"
,"Micro"
,"Macro"
, or"Macro1"
.- absorption
Type of absorption. Options are
"Intravenous"
,"FirstOrder"
,"Gamma"
,"InverseGaussian"
,"Weibull"
.- numCompartments
Value of either
1
,2
, or3
.- isClosedForm
Set to
TRUE
to convert model from a differential equation to close form.- isTlag
Set to
TRUE
to add a lag time parameter to the model.- hasEliminationComp
Set to
TRUE
to add an elimination compartment to the model.- isFractionExcreted
Set to
TRUE
if elimination compartment (hasEliminationComp = TRUE
) contains a fraction excreted parameter.- isSaturating
Set to
TRUE
to use Michaelis-Menten kinetics for elimination. Only applicable to models withparamteterization = "Clearance"
- infusionAllowed
Set to
TRUE
if infusions allowed.- isDuration
Set to
TRUE
if infusions use duration instead of rate (must also setinfusionAllowed = TRUE
).- isSequential
Set to
TRUE
to freeze PK fixed effects and convert the corresponding random effects into covariates as well as remove the PK observed variable from the model.- isPkFrozen
Set to
TRUE
to freeze PK fixed effects and remove the corresponding random effects as well as the PK observed variable from the model.- hasEffectsCompartment
Set to
TRUE
to include an effect compartment into the model.- indirectType
Type of drug actions for the indirect response model. Options are
"LimitedStimulation"
,"InfiniteStimulation"
,"LimitedInhibition"
,"InverseInhibition"
,"LinearStimulation"
, or"LogLinearStimulation"
.- isBuildup
Set to
FALSE
to have the drug actions affect the loss/degradation instead of the production.- isExponent
Set to
TRUE
to add an exponent parameter to the drug action term.- indirectFrozen
Set to
TRUE
to freeze PD fixed effects and remove the corresponding random effects as well as the PD observed variable from the model.- data
Input dataset
- columnMap
If
TRUE
(default) column mapping arguments are required. Set toFALSE
to manually map columns after defining model usingcolMapping
.- modelName
Model name for subdirectory created for model output in current working directory.
- workingDir
Working directory to run the model. Current working directory will be used if
workingDir
not specified.- ...
Arguments passed on to
pkindirectmodel_MappingParameters
ID
Column mapping argument for input dataset column(s) that identify individual data profiles. Only applicable to population models
isPopulation = TRUE
.Time
Column mapping argument that represents the input dataset column for the relative time used in a study and only applicable to time-based models.
A1
Column mapping argument that represents the input dataset column for the amount of drug administered. Only applicable to the following types of models:
Models with
absorption = "Intravenous"
and parameterization set to either"Clearance"
,"Micro"
, or"Macro"
Models with
absorption
set to either"Gamma"
,"InverseGaussian"
, or"Weibull"
Aa
Column mapping argument that represents the input dataset column for the amount of drug administered and only applicable to models with
absorption = "FirstOrder"
.A
Column mapping argument that represents the input dataset column for the amount of drug administered and only applicable to models with
absorption = "Intravenous"
andparameterization = "Macro1"
.A1_Rate
Column mapping argument that represents the input dataset column for the rate of drug administered. Only applicable to the following types of models:
Models with
absorption = "Intravenous"
,infusionAllowed = TRUE
and parameterization set to either"Clearance"
,"Micro"
or"Macro"
Models with
absorption
set to either"Gamma"
,"InverseGaussian"
, or"Weibull"
andinfusionAllowed = TRUE
A1_Duration
Column mapping argument that represents the input dataset column for the duration of drug administered. Only applicable to the following types of models:
Models with
absorption = "Intravenous"
,infusionAllowed = TRUE
withisDuration = TRUE
and parameterization set to either"Clearance"
,"Micro"
or"Macro"
Models with
absorption
set to either"Gamma"
,"InverseGaussian"
, or"Weibull"
andinfusionAllowed = TRUE
withisDuration = TRUE
Aa_Rate
Column mapping argument that represents the input dataset column for the rate of drug administered and only applicable to models with
absorption = "FirstOrder"
,infusionAllowed = TRUE
.Aa_Duration
Column mapping argument that represents the input dataset column for the duration of drug administered and only applicable to models with
absorption = "FirstOrder"
,infusionAllowed = TRUE
, andisDuration = TRUE
.A_Rate
Column mapping argument that represents the input dataset column for the rate of drug administered and only applicable to models with
absorption = "Intravenous"
,infusionAllowed = TRUE
, andparameterization = "Macro1"
.A_Duration
Column mapping argument that represents the input dataset column for the duration of drug administered and only applicable to models with
absorption = "Intravenous"
,infusionAllowed = TRUE
,isDuration = TRUE
, andparameterization = "Macro1"
.A1Strip
Column mapping argument that represents the input dataset column for the stripping dose and only applicable to models with
parameterization = "Macro"
.CObs
Column mapping argument that represents the input dataset column for the observations of drug concentration in the central compartment and only applicable to models with
parameterization
being either set to either"Clearance"
or"Micro"
.C1Obs
Column mapping argument that represents the input dataset column for the observations of drug concentration in the central compartment and only applicable to models with
parameterization
being either set to either"Macro"
or"Macro1"
.A0Obs
Column mapping argument that represents the input dataset column for the observed amount of drug in the elimination compartment. (
hasEliminationComp = TRUE
).EObs
Column mapping argument that represents the input dataset column for the observed drug effect.
nV
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnV
.nV2
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnV2
.nV3
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnV3
.nCl
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnCl
.nCl2
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnCl2
.nCl3
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnCl3
.nKa
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnKa
.nA
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnA
.nAlpha
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnAlpha
.nB
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnB
.nBeta
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnBeta
.nC
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnC
.nGamma
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnGamma
.nKe
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnKe
.nK12
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnK12
.nK21
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnK21
.nK13
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnK13
.nK31
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnK31
.nTlag
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnTlag
.nKm
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnKm
.nVmax
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnVmax
.nFe
If
isSequential = TRUE
andisFractionExcreted = TRUE
, mapped to the input dataset column that lists the values for random effectnFe
.nMeanDelayTime
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnMeanDelayTime
.nShapeParam
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnShapeParam
.nShapeParamMinusOne
If
isSequential = TRUE
, mapped to the input dataset column that lists the values for random effectnShapeParamMinusOne
.
Column mapping
Note that quoted and unquoted column names are supported. Please see colMapping
.
Examples
model <- pkindirectmodel(
parameterization = "Micro",
data = pkpdData,
ID = "ID",
Time = "Time",
A1 = "Dose",
CObs = "CObs",
EObs = "EObs"
)
# View PML Code
print(model)
#>
#> Model Overview
#> -------------------------------------------
#> Model Name : Model_24_09_29_21_22
#> Working Directory : C:/Users/jcraig/Documents/GitHub/R-RsNLME/docs/reference/Model_24_09_29_21_22
#> Is population : TRUE
#> Model Type : PK_INDIRECT
#>
#> PK
#> -------------------------------------------
#> Parameterization : Micro
#> Absorption : Intravenous
#> Num Compartments : 1
#> Dose Tlag? : FALSE
#> Elimination Comp ?: FALSE
#> Infusion Allowed ?: FALSE
#> Sequential : FALSE
#> Freeze PK : FALSE
#>
#> Indirect
#> -------------------------------------------
#> Indirect Type : LimitedStimulation
#> Effect Compartment: FALSE
#> Buildup : TRUE
#> Exponent : FALSE
#> Indirect Frozen : FALSE
#>
#> PML
#> -------------------------------------------
#> test(){
#> cfMicro(A1, Ke)
#> dosepoint(A1)
#> C = A1 / V
#> deriv(E = Kin * (1 + Emax * C / (C + EC50)) - Kout * E)
#> sequence{ E= Kin / Kout}
#> error(EEps=1)
#> observe(EObs=E + EEps)
#> error(CEps=0.1)
#> observe(CObs=C * ( 1 + CEps))
#> stparm(V = tvV * exp(nV))
#> stparm(Ke = tvKe * exp(nKe))
#> stparm(Kin = tvKin * exp(nKin))
#> stparm(Kout = tvKout * exp(nKout))
#> stparm(Emax = tvEmax * exp(nEmax))
#> stparm(EC50 = tvEC50 * exp(nEC50))
#> fixef( tvV = c(,1,))
#> fixef( tvKe = c(,1,))
#> fixef( tvKin = c(,1,))
#> fixef( tvKout = c(,1,))
#> fixef( tvEmax = c(,1,))
#> fixef( tvEC50 = c(,1,))
#> ranef(diag(nV,nKe,nKin,nKout,nEmax,nEC50) = c(1,1,1,1,1,1))
#> }
#>
#> Structural Parameters
#> -------------------------------------------
#> V Ke Kin Kout Emax EC50
#> -------------------------------------------
#> Observations:
#> Observation Name : EObs
#> Effect Name : E
#> Epsilon Name : EEps
#> Epsilon Type : Additive
#> Epsilon frozen : FALSE
#> is BQL : FALSE
#> -------------------------------------------
#> Observation Name : CObs
#> Effect Name : C
#> Epsilon Name : CEps
#> Epsilon Type : Multiplicative
#> Epsilon frozen : FALSE
#> is BQL : FALSE
#> -------------------------------------------
#> Column Mappings
#> -------------------------------------------
#> Model Variable Name : Data Column name
#> id : ID
#> time : Time
#> A1 : Dose
#> EObs : EObs
#> CObs : CObs
#>