Executes an NLME stepwise covariate search
stepwiseSearch.Rd
Executes an NLME stepwise covariate search
Usage
stepwiseSearch(
model,
hostPlatform = NULL,
params,
covariateModel,
stepwiseParams,
runInBackground = FALSE,
...
)
Arguments
- model
PK/PD model class object.
- hostPlatform
Host definition for model execution. See
hostParams
. Ifmissing
, multicore local host with 4 threads is used.- params
Engine parameters. See
engineParams
. Ifmissing
, default parameters generated by engineParams(model) are used.- covariateModel
Covariate Effects Model providing the relationship between covariates and structural parameters to test (
covariateModel(model)
).- stepwiseParams
Stepwise parameters defining decision tree. See
StepwiseParams
- runInBackground
Set to
TRUE
to run in background and return prompt.- ...
Additional arguments for
hostParams
or arguments available insideengineParams
functions. IfengineParams
arguments are supplied through bothparams
argument and additional argument (i.e., ellipsis), then the arguments inparams
will be ignored and only the additional arguments will be used with warning. IfhostParams
arguments are supplied through both thehostPlatform
argument and the ellipses, values supplied tohostPlatform
will be overridden by additional arguments supplied via the ellipses e.g.,...
.
Value
if runInBackground = FALSE
, a data frame is returned with
stepwise search results, i.e. "Overall" comma separated file.
Otherwise the StepwiseNlmeJob
class object is returned.
Examples
# \donttest{
# Define the model
model <- pkmodel(numCompartments = 1,
data = pkData,
ID = "Subject",
Time = "Act_Time",
A1 = "Amount",
CObs = "Conc",
workingDir = tempdir())
# Add Gender covariate of type categorical
model <- addCovariate(model,
covariate = "Gender",
type = "Categorical",
effect = c("V", "Cl"),
levels = c(0, 1),
labels = c("Female", "Male"))
# Add Bodyweight covariate of type continuous
model <- addCovariate(model,
covariate = "BodyWeight",
type = "Continuous",
direction = "Backward",
center = "Mean",
effect = c("V", "Cl"))
# Define the host
defaultHost <- hostParams(parallelMethod = "MULTICORE",
hostName = "local",
numCores = 8,
sharedDirectory = tempdir())
# Define the engine parameters
params <- engineParams(model, numIterations = 6)
# Define covariate model
cp <- covariateModel(model)
# Define the stepwise parameters
sp <- StepwiseParams(0.01, 0.001, "-2LL")
# Perform stepwise search
OverallDF <- stepwiseSearch(model = model,
hostPlatform = defaultHost,
params = params,
covariateModel = cp,
stepwiseParams = sp,
runInBackground = FALSE)
#> Stepwise Job
#>
#> NLME Job
#>
#> Preparing files for Stepwise Covariate Search run
#>
#> ----------------------------------------------------------------------
#> Processing scenarios:
#> "Base Model, no covariates", " V-Gender", " V-BodyWeight", " Cl-Gender", " Cl-BodyWeight"
#> ----------------------------------------------------------------------
#>
#> Compiling 1 of 1 NLME models
#> TDL5 version: 25.7.1.1
#>
#> Status: OK
#> License expires: 2026-08-06
#> Refresh until: 2025-09-05 07:01:25
#> Current Date: 2025-08-06
#> The model compiled
#>
#> Num Jobs/Completed/Failed:5/0/0
#>
#> Num Jobs/Completed/Failed:5/0/0
#>
#> Num Jobs/Completed/Failed:5/0/0
#>
#> Num Jobs/Completed/Failed:5/0/0
#>
#> Num Jobs/Completed/Failed:5/0/0
#>
#> Num Jobs/Completed/Failed:5/5/0
#>
#> Trying to generate job results...
#> Done generating job results.
#> Find effect to add that reduces -2LL the most:
#> cstep001 V-Gender 1000 2304.989457 ( 2298.354560 +6.634897 ) < 2318.629980 )
#> cstep002 V-BodyWeight 0100 X 2326.824177 ( 2320.189280 +6.634897 ) > 2318.629980 )
#> cstep003 Cl-Gender 0010 X 2360.440537 ( 2353.805640 +6.634897 ) > 2318.629980 )
#> cstep004 Cl-BodyWeight 0001 X 2328.560277 ( 2321.925380 +6.634897 ) > 2318.629980 )
#> cstep001 V-Gender 1000 chosen, -2LL = 2298.354560
#> ----------------------------------------------------------------------
#> Processing scenarios:
#> " V-Gender V-BodyWeight", " V-Gender Cl-Gender", " V-Gender Cl-BodyWeight"
#> ----------------------------------------------------------------------
#>
#> Compiling 1 of 1 NLME models
#> TDL5 version: 25.7.1.1
#>
#> Status: OK
#> License expires: 2026-08-06
#> Refresh until: 2025-09-05 07:01:25
#> Current Date: 2025-08-06
#> The model compiled
#>
#> Num Jobs/Completed/Failed:3/0/0
#>
#> Num Jobs/Completed/Failed:3/0/0
#>
#> Num Jobs/Completed/Failed:3/0/0
#>
#> Num Jobs/Completed/Failed:3/0/0
#>
#> Num Jobs/Completed/Failed:3/0/0
#>
#> Num Jobs/Completed/Failed:3/3/0
#>
#> Trying to generate job results...
#> Done generating job results.
#> Find effect to add that reduces -2LL the most:
#> cstep005 V-Gender V-BodyWeight 1100 X 2306.569717 ( 2299.934820 +6.634897 ) > 2298.354560 )
#> cstep006 V-Gender Cl-Gender 1010 X 2330.298417 ( 2323.663520 +6.634897 ) > 2298.354560 )
#> cstep007 V-Gender Cl-BodyWeight 1001 X 2308.244297 ( 2301.609400 +6.634897 ) > 2298.354560 )
#>
#> No effect chosen to add
#> Find effect to subtract that increases -2LL the least:
#> cstep000 0000 X 2307.802414 ( 2318.629980 -10.827566 ) > 2298.354560 )
#>
#> No effect chosen to subtract
#>
#> Scenario to use = cstep001 V-Gender 1000
#>
#> Summarizing stepwise covariate search results for 8 scenarios
#>
#> Finished summarizing results. Transferring data and loading the results...
# }