Arguments for VPC runs
NlmeVpcParams-class.Rd
Class initializer for arguments of visual predictive check (VPC) runs
Arguments
- numReplicates
Integer; Number of replicates to simulate the model
- seed
Integer; Random number generator seed
- predCorrection
Character; Type of correction to use when calculating a prediction-corrected observation. Options are
"none", "proportional", "additive"
. This option is ignored for discontinuous observed variables (categorical, count, and time-to-event).- predVarCorr
Logical; Set to
TRUE
to use Prediction Variance Correction. Only applicable to the case wherepredCorrection
is set to either"proportional"
or"additive"
.- outputPRED
Logical; Set to
TRUE
to include population prediction (PRED) results for continuous observed variables in output.- stratifyColumns
Character or character vector; Names of categorical covariates (up to 3) used to stratify modeling simulation results.
- observationVars
NlmeObservationVar class instance or list of these instances
- simulationTables
Optional list of simulation tables.
NlmeSimTableDef
class instance or a list of such instances. Could be generated bytableParams
wrapper function or byNlmeSimTableDef
class instance initializing directly.
Examples
if (FALSE) { # \dontrun{
job <- fitmodel(model)
# View estimation results
print(job)
finalModelVPC <- copyModel(model, acceptAllEffects = TRUE, modelName = "model_VPC")
# View the model
print(finalModelVPC)
# Set up VPC arguments to have PRED outputted to simulation output dataset "predout.csv"
vpcSetup <- NlmeVpcParams(outputPRED = TRUE)
# Run VPC using the default host, default values for the relevant NLME engine arguments
finalVPCJob <- vpcmodel(model = finalModelVPC, vpcParams = vpcSetup)
# Observation dataset predcheck0.csv
dt_ObsData <- finalVPCJob$predcheck0
# Simulation output dataset predout.csv
dt_SimData <- finalVPCJob$predout
# Add PRED from REPLICATE = 0 of simulation output dataset to observed input dataset
dt_ObsData$PRED <- dt_SimData[REPLICATE == 0]$PRED
# tidyvpc package VPC example:
library(magrittr)
library(tidyvpc)
# Create a regular VPC plot with binning method set to be "jenks"
binned_VPC <- tidyvpc::observed(dt_ObsData, x = IVAR, yobs = DV) %>%
tidyvpc::simulated(dt_SimData, ysim = DV) %>%
tidyvpc::binning(bin = "jenks") %>%
tidyvpc::vpcstats()
plot_binned_VPC <- plot(binned_VPC)
# Create a pcVPC plot with binning method set to be "jenks"
binned_pcVPC <- tidyvpc::observed(dt_ObsData, x = IVAR, yobs = DV) %>%
tidyvpc::simulated(dt_SimData, ysim = DV) %>%
tidyvpc::binning(bin = "jenks") %>%
tidyvpc::predcorrect(pred = PRED) %>%
tidyvpc::vpcstats()
plot_binned_pcVPC <- plot(binned_pcVPC)
} # }