Arguments for VPC runs
NlmeVpcParams-class.Rd
Class initializer for arguments of visual predictive check (VPC) runs
Arguments
- numReplicates
Integer; Number of replicates to simulate the model
- seed
Integer; Random number generator seed
- predCorrection
Character; Type of correction to use when calculating a prediction-corrected observation. Options are
"none", "proportional", "additive"
. This option is ignored for discontinuous observed variables (categorical, count, and time-to-event).- predVarCorr
Logical; Set to
TRUE
to use Prediction Variance Correction. Only applicable to the case wherepredCorrection
is set to either"proportional"
or"additive"
.- outputPRED
Logical; Set to
TRUE
to include population prediction (PRED) results for continuous observed variables in output.- stratifyColumns
Character or character vector; Names of categorical covariates (up to 3) used to stratify modeling simulation results.
- observationVars
NlmeObservationVar class instance or list of these instances
- simulationTables
Optional list of simulation tables.
NlmeSimTableDef
class instance or a list of such instances. Could be generated bytableParams
wrapper function or byNlmeSimTableDef
class instance initializing directly.
Examples
# \donttest{
job <- fitmodel(model)
#> Error: object 'model' not found
# View estimation results
print(job)
#> Error: object 'job' not found
finalModelVPC <- copyModel(model, acceptAllEffects = TRUE, modelName = "model_VPC")
#> Error: object 'model' not found
# View the model
print(finalModelVPC)
#> Error: object 'finalModelVPC' not found
# Set up VPC arguments to have PRED outputted to simulation output dataset "predout.csv"
vpcSetup <- NlmeVpcParams(outputPRED = TRUE)
# Run VPC using the default host, default values for the relevant NLME engine arguments
finalVPCJob <- vpcmodel(model = finalModelVPC, vpcParams = vpcSetup)
#> Error: object 'finalModelVPC' not found
# }