Generate and Report Model Diagnostics from NLME or NONMEM runs
resultsUI.Rd
Shiny application to generate, customize, and report diagnostic plots and tables from NLME or NONMEM output files. Create an Rmarkdown file of tagged model diagnostics and render into submission ready report.
Arguments
- model
A single object, vector, or list of objects of class
NlmePmlModel
.- xpdb
A single object or list of objects of class
xpose_data
.- tagged
List of tagged objects returned from previous
tagged <- resultsUI()
session.- settings
List of settings (e.g., settings.Rds) returned from previous Shiny session.
- ...
Additional arguments for Pirana integration.
Examples
if (FALSE) { # \dontrun{
# RsNLME
library(Certara.RsNLME)
library(Certara.ModelResults)
model1 <- pkmodel(numCompartments = 1,
data = pkData,
ID = "Subject",
Time = "Act_Time",
A1 = "Amount",
CObs = "Conc",
modelName = "OneCpt_IVBolus_FOCE-ELS")
baseFitJob1 <- fitmodel(model1)
model2 <- pkmodel(numCompartments = 2,
data = pkData,
ID = "Subject",
Time = "Act_Time",
A1 = "Amount",
CObs = "Conc",
modelName = "TwCpt_IVBolus_FOCE-ELS")
baseFitJob2 <- fitmodel(model2)
# Run Model Results
resultsUI(model = c(model1, model2))
# NONMEM via xpose
library(Certara.ModelResults)
library(xpose)
xpdb <- xpose_data(
runno = "1",
prefix = "run",
ext = ".lst",
dir = "./NONMEM/Hands_onB/")
results(xpdb = xpdb)
# Multiple models
xpdb_multiple <- list(
run1 = xpose_data(file = "run1.lst"),
run2 = xpose_data(file = "run2.lst"),
run3 = xpose_data(file = "run3.lst"),
run4 = xpose_data(file = "run4.lst")
)
} # }