Skip to contents

The type of plot depends on the type of covariate: boxplot for categorical, geom_point and geom_smooth for continuous.

Usage

nlme.var.vs.cov(xpdb, covColNames, nrow = 1, ncol = 1, yVar = "WRES", ...)

Arguments

xpdb

An xpose database object.

covColNames

Character vector of covariates to build the matrix.

nrow

Number of rows.

ncol

Number of columns; if ncol=1, each gtable object is treated separately.

yVar

Variable from xpdb data to build a plot.

...

Parameters to be passed to ggarrange()

Value

List of gtable

Examples

nlme.var.vs.cov(
  xpdb = xpdb_ex_Nlme,
  covColNames = c("sex", "wt", "age"),
  yVar = "WRES",
  nrow = 2,
  ncol = 2
  )
#> Warning: Removed 100 rows containing non-finite outside the scale range
#> (`stat_smooth()`).
#> Warning: Removed 100 rows containing missing values or values outside the scale range
#> (`geom_point()`).
#> Warning: Removed 100 rows containing non-finite outside the scale range
#> (`stat_smooth()`).
#> Warning: Removed 100 rows containing missing values or values outside the scale range
#> (`geom_point()`).
#> Warning: Removed 100 rows containing non-finite outside the scale range
#> (`stat_boxplot()`).
#> adding dummy grobs

#> [[1]]

#>