Skip to contents

Use to create a stack of plots of parameter estimates plotted against covariates.

Usage

nlme.par.vs.cov(xpdb, covColNames, nrow = 1, ncol = 1, ...)

Arguments

xpdb

An xpose database object.

covColNames

Character vector of covariates to build the matrix.

nrow

Number of rows.

ncol

Number of columns; if ncol=1, each gtable object is treated separately.

...

Parameters to be passed to ggarrange().

Value

List of gtable

Examples

nlme.par.vs.cov(
  xpdb = xpdb_ex_Nlme,
  covColNames = c("sex", "wt", "age")
)
#> `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'

#> `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'

#> `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'

#> `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'



#> [[1]]

#> 
#> [[2]]

#> 
#> [[3]]

#> 
#> [[4]]

#> 
#> [[5]]

#> 
#> [[6]]

#>